Curiosity and Carbon – Discussing Nuclear Energy with CASEnergy’s Ron Kirk

Ron Kirk was curious.

As Co-Chair of the Clean and Safe Energy Coalition, Kirk had visited a half-dozen states to talk about the benefits of nuclear energy and everywhere he went people enthusiastically asked him about these things called small modular reactors.

case_coalition_co-chair_kirk_250x350_01

Ambassador Ron Kirk

Which is why when the opportunity to visit Oregon presented itself Kirk was eager to make the trip. “I have been wanting to come out here to learn about SMRs. I had to come see it for myself,” Kirk told me.

Oregon is home to NuScale Power, the leading player in the U.S. small modular reactor arena. NuScale, with offices in Corvallis and Portland, employs about 600 people and anticipates submitting its SMR design certification to the Nuclear Regulatory Commission later this year.

NuScale’s Dr. Jose Reyes and Mike McGough led Kirk on a tour of NuScale research facilities on Oregon State University’s campus, including the Integral System Test facility, a working prototype of the NuScale reactor design.

But with Kirk, President Obama’s former trade ambassador and past mayor of Dallas, the discussion inevitably makes its way from technology to policy, specifically policies that govern how this country will generate low-carbon energy into the future.

IMG_5770

Ron Kirk, left, speaks with NuScale’s Dr. Jose Reyes at the NuScale facilities on the OSU campus.

Kirk was surprised to learn about Oregon’s moratorium (as it were) on new nuclear energy projects. Passed by voters in 1980 (the year after Three Mile Island), Measure 7 basically says there can be no new nuclear energy plants in the state until there is a permanent federal repository for used nuclear fuel storage. Any new nuclear plant proposed would also have to be approved by a majority of Oregon voters.

Kirk says that was then and this is now.

“Literally, you have the world coming here because of this incredible, potentially game-changing technology that came out of Oregon State,” Kirk said. “It’s going to be built elsewhere and deployed elsewhere and I’m just stunned that Oregon provided all the intellectual fuel and capital in what could be a game-changer in the war on carbon emissions and it’s not going to be deployed in the state.

“This is the equivalent of saying we produced the scientists who discovered penicillin and the state saying, ‘sorry, we passed a law that says you can’t use it here.’”

Addressing the mythology

Ambassador Kirk quickly discovered after joining CASEnergy that when it comes to nuclear, one spends a lot of time dispelling the myths and misconceptions before the conversation can progress to the benefits of nuclear as a generation resource.

One of the myths most in need of dispelling, in Kirk’s view, is that nuclear energy can’t help with climate change.

Indeed, a recent poll by the Nuclear Energy Institute found that 70 percent of respondents did not know that nuclear energy is the largest source of clean air energy in the U.S.

“Nuclear energy is the workhorse of clean energy,” Kirk explains. “You just can’t get around the fact that two-thirds of our carbon-free energy in this country comes from nuclear energy. That doesn’t make you anti-wind or anti-solar, we love those. But you simply cannot build enough wind and solar to replace the benefit that nuclear contributes to our carbon reduction strategy, both existing and going forward.”

Which is one reason he questions why a state like Oregon would essentially turn its back on a resource that has so much potential for providing carbon-free, full-time electricity.

“For Oregon to justifiably pride itself on its commitment to the environment, I just find it a little incongruous that they can’t find a way to square with that, the humility to say ‘maybe we had very legitimate reasons for the moratorium that went into place years ago. But today, knowing what we know now, let’s have an intelligent debate about that and revisit that,’” Kirk said.

Ron Kirk and Student

Ron Kirk speaks to a student at Portland State University.

As in Oregon and elsewhere, Kirk also tackles head-on the myth that nuclear waste, or used nuclear fuel, is an issue that would prevent more nuclear energy facilities from coming online. Kirk says the real issue with nuclear waste is the poor political discussion about it that has taken place for decades.

“We don’t have a (technical) challenge with nuclear waste because we know how to store nuclear fuel. We could recycle it. But the truth is nuclear fuel can be stored safely on site for 100 years. That’s not a reason to not deploy nuclear going forward,” Kirk said.

“If you had the fullness of the debate, people would see the nuclear waste issue is more of a red herring than it is a reason to not go forward with embracing nuclear energy.

“Our message is our nation is richly blessed to have a diversity of energy resources, and a non-carbon diversity of energy resources. Where we’ve gotten into trouble is when we try to arbitrarily pick winners and losers.”

Looking to the future

As the former U.S. trade representative, Kirk has seen the world. He has seen parts of the world that aren’t so abundantly equipped with rich energy resources. And it’s made an impression on him.

“When you travel around the world and you see what it’s like to grow an economy, operate a medical system, without the benefits of a reliable energy system, you come to realize we’re so blessed in America,” Kirk said. “In Dallas, we had the only person die of Ebola in the U.S. The real tragedy of that story, if you’ve been to the Ivory Coast and Africa, that’s not a story of infectious disease, that’s the story of the tragedy of living in the 21st century in a society that doesn’t have access to clean water and power. If they had those two things you don’t have an Ebola crisis. You can’t run research in hospitals if you don’t have those two elements.”

Kirk mentioned that on his visits to developing countries the Secret Service wouldn’t let him take the elevator for fear the power could go out at any minute, potentially stranding the group.

“When we were in office, India had a brownout that affected a third of the country. I had to remind my daughters that a third of India is almost all of North America. The mayhem and anger across the U.S. if we didn’t have power for 10 days? Our kids think it’s a birthright to wake up and plug in their smart phones and iPads and laptops. Our kids’ rooms suck more energy than our entire homes did growing up!”

It’s for all those reasons that Kirk says choices and decisions about where we get our electricity in the future need to be made now and made rationally.

“The time to start thinking about energy isn’t going to be 10 years from now when Vermont says maybe we shouldn’t have shut that plant down. You can’t call Wal-Mart and say we need a 1,000 megawatt electricity facility. These are decisions that require years of planning and design and billions of dollars in investment. America has been fueled, our growth has been fueled, by decisions that were made about clean water and energy 30, 40, 50 years ago. It’s up to our generation now to make sure we’re going to have the power, the infrastructure, to continue to drive our economy in the future.”

Optimistic about nuclear energy

Kirk sees reason for optimism concerning nuclear energy. The current energy debate is closely linked to reducing carbon-emissions, and that plays right into the need for more nuclear. He also sees younger generations making that linkage. Couple that with an embracing of technology and a growth of employment opportunities in nuclear energy, that bodes well for changing opinions among Millennials.

He also sees a change at the highest levels of government around the world.

“That diversity of hydro, wind, solar and nuclear is what our global leaders embraced in Paris (at the climate talks). They wanted to give nations the flexibility and very much over weighted it to not just renewables, but non-carbon sources. If it makes sense for India and it makes sense for China, which are two of the largest carbon-emitting nations, then it makes sense for the United States.

“Our president and our Energy secretary have embraced nuclear and amended the federal rules to say we are getting our energy from non-carbon emitting sources and I would hope Oregon would see the wisdom of that and soon follow suit.”

(Posted by John Dobken)

Analysis finds EN has lowest nuclear fuel costs

An analysis published this week in Platts’ Nuclear Fuel found Energy Northwest’s Columbia Generating Station had the lowest nuclear fuel cost of 28 plants surveyed across the country. Columbia’s fuel cost for fiscal year 2013 was 5.99 mills per kilowatt-hour of generation. A mill is a 10th of a cent. The average for the 28 plants surveyed is 8.16 mills per kwh, according to Platts.

Fuel Receipt 2

New nuclear fuel assemblies are inspected as they arrive at Columbia Generating Station.

“The plants reported their fuel costs either on the Federal Energy Regulatory Commission’s Form 1 or to Platts. These costs take into account such fuel-related expenses as the cost of uranium, conversion, enrichment services and the fabricated cost of the fuel, as well as the amortized value of all fuel in the reactor core that year and payments to the Nuclear Waste Fund,” Platts wrote in the article.

Energy Northwest financial data shows even lower nuclear fuel costs for Columbia in fiscal 2014 and fiscal 2015, 5.45 mills and 3.39 mills per kwh, respectively.

Columbia Generating Station, an 1,190-megawatt boiling water reactor, produces enough electricity to power a city the size of Seattle and is the third largest generator of electricity in Washington state. All of Columbia’s electricity is sold at-cost to Bonneville Power Administration. Ninety-two Northwest utilities receive a percentage of its output.

Energy Northwest’s historic low fuel costs can be directly attributed to the management of the nuclear fuels program, which looks for innovative ways to reduce costs.

Brent Ridge edit

Brent Ridge, EN chief financial officer.

“The Platts analysis confirms that the strategic moves we have made as an organization regarding our fuel management program are paying off for Northwest ratepayers,” Energy Northwest chief financial officer Brent Ridge said. “The uranium tails transaction completed in 2012 will only serve to continue this industry-leading trend in low fuel costs for Columbia.”

Energy Northwest began looking at the pursuit of recycling depleted uranium contained in the Department of Energy’s stockpiles in 2003 and the initial efforts led to the Uranium Tails Pilot Program, a demonstration program designed to determine if the DOE stockpiles could be successfully reused. The pilot program ran from May 2005 through December of 2006 and was successful in every aspect. Energy Northwest received 1,940 metric tons of natural uranium from the pilot, which was placed into inventory allowing the agency to avoid purchasing uranium during the historic price run up in that period.

The 2012 tails program was a larger follow-on program that again will help Energy Northwest control costs for the region’s ratepayers. The benefits of that program – less financial risk due to future fuel cost uncertainty, and lower fuel costs on an expected-value basis – are being achieved.The transaction increased rate stability by removing eight years of cost risk from Columbia’s fuel budget, and the transaction continues to have positive value, resulting in lower rates.

EN Uranium Product

EN uranium tails product when it was stored at Paducah, Ky.

Prior to the recent uranium tails program, Energy Northwest had enough fuel in inventory or under contract to meet its fuel reloading requirements through 2019. With the additional fuel, Columbia’s fuel costs will be reduced and predictable through 2028.

Platts, a division of McGraw Hill Financial, is an independent provider of information and benchmark prices for the commodities and energy markets. More information can be found at their website: http://www.platts.com.

(Posted by John Dobken)

Deep Dive: What is Resource Adequacy?

Electricity is something many take for granted, except in those rare instances when the power goes out. It’s not an overstatement to say that electricity is an invisible, ubiquitous and essential part of modern life; it keeps our homes and businesses well-lit, comfortable and safe, and it powers the various devices we use for work and leisure.

Whenever we flip a switch, adjust the thermostat, go online, recharge our smartphone, or drive through an intersection with a traffic light, we are counting on the power system to always be ready and able to reliably meet our needs.

20131018-detail-custom-towers-grand-coulee

Courtesy BPA

Highly dependable utility service is no accident – instead, it is provided by complex and sophisticated power grids that are the largest machines in the world. These electric utility systems consist of multiple parts, including power plants, transmission lines, local distribution facilities, and associated control and communication systems.

As our consumption of electricity fluctuates from moment to moment, hour to hour, day to day, and month to month, an equal amount of power needs to be produced and delivered to match the load. If at any given point in time not enough juice is being produced, the stuff we’re using starts to shut down. Conversely, if there’s too much juice, things start to overheat. So a continuous re-balancing of loads and resources takes place, like an intricately-choreographed, ongoing dance that enables modern life.

What is resource adequacy?

Simply defined, resource adequacy means having sufficient power resources available when needed to reliably serve electricity demands across a range of reasonably foreseeable conditions.

Electricity consumption is measured using two metrics – peak demand and energy load. Peak demand is the maximum amount of power used at a specific point in time, such as in the evening during very cold or very hot weather after people have arrived home and are using multiple power-consuming devices. The second metric, energy load, is the amount of power consumed over a period of time, such as the monthly energy amount shown on your electric bill.

To keep the lights on, the utility system has to do three things. First, it needs to have enough generating capacity available to meet the peak demands when they occur. Second, it needs generating resources that can produce energy to serve loads across time, from day-to-day, month-to-month, and season-to-season. Third, the utility system needs to have enough operating flexibility to follow upward and downward fluctuations in electricity demands. If the system has sufficient resources to do all of these things reliably, then it is deemed to have resource adequacy (including additional resources to protect against sudden unplanned outages).

What types of resources contribute to resource adequacy?

Traditionally, utilities have used three basic types of generating resources to perform the load-resource balancing act described above. The three types of power plants are known as baseload, peaking and midrange generators. All three types are needed to achieve resource adequacy.

Baseload generators can produce power at a constant rate for extended periods of time, and usually have a relatively low variable cost of production. Examples of baseload generation include nuclear power plants, as well as coal-fired plants. Baseload generators are the workhorses that produce large amounts of energy, along with steady, dependable capacity.

cropped-columbia-for-web.jpg

Columbia Generating Station near Richland, Wash.

At the other end of the spectrum are peaking generators, which can quickly provide capacity to help meet peak loads and to follow short-term fluctuations in loads. Peaking generators also tend to have higher variable operating costs. A common type of peaking generation is single-cycle combustion turbines. These are basically large jet engines that can burn either natural gas or liquid fuels. Peaking generators are good sources of capacity and flexibility, but due to their relatively high operating costs, they are not used to produce large amounts of energy.

Midrange generators have more operating flexibility than baseload generators but less than peaking generators. Midrange generators also have variable operating costs that are higher than baseload generators but lower than peaking generators. The most prominent example of midrange generation is combined-cycle combustion turbines, which produce power in two stages. In the first stage, natural gas is burned in a combustion turbine and used to turn a generator. In the second stage, exhaust heat from the combustion turbine is used to make steam and turn a steam turbine-generator. Typically, midrange generators are used to help supply moderate amounts of capacity, energy and flexibility.

Okay, by now you are probably wondering: What about all the hydroelectric power we have in the Northwest? Traditionally, hydro generation has helped meet the region’s needs for all three types of power. It is a particularly effective, low-cost resource for meeting peak demands and following fluctuations in demand. As a result, the Northwest has historically not needed as much fossil-fueled peaking and midrange generation as other regions of the U.S. Our Northwest hydro power also produces significant amounts of annual energy, but not as much as could be produced from an equal amount of baseload generating capacity.

How do utilities decide which resources to use?

When deciding how to operate their resources to meet consumers’ demands for electricity, utilities seek to provide reliable service at the lowest possible cost.

The resources that a utility normally decides to use, or “dispatch,” first are its resources that have the lowest variable operating cost. These include baseload resources such as Columbia Generating Station. Next, the utility dispatches its resources that have the next highest variable operating cost; often these are midrange generators. Finally, if its loads are relatively high or may be subject to rapid fluctuations, the utility will dispatch its more expensive peaking resources.

Columbia Generating Station is one of the key resources that BPA uses to deliver clean, reliable power to public power utilities across the Northwest. Columbia produces 1,190 gross megawatts of baseload power, including both firm energy and capacity.

For wind power to produce the same amount of energy on an annual basis, more than 3,500 megawatts of wind turbines would be needed. Also, Columbia is not subject to the fluctuations that affect generation from wind and solar-PV. As a result, Columbia provides capacity that is much more firm, and does not require other forms of generating capacity to be held to provide incremental and decremental reserves to integrate wind and other intermittent forms of generation.

How do renewables and other alternative forms of resources fit In?

During the last 15 years, large amounts of new renewable resources have been developed in the Northwest. To date, the predominant share of renewable resource additions in the region have been wind power, totaling over 8,000 megawatts of installed capacity. In more recent years, falling costs and government incentives have also begun to make solar photovoltaic power more attractive.

Nine Canyon Wind Farm

Nine Canyon Wind Farm, located south of Kennewick, Wash.

Wind and solar-PV differ from other existing power resources. In particular, wind and solar-PV produce power intermittently. This limits their ability to contribute to resource adequacy. However, both also have very low variable operating costs. This means that to the extent they can be integrated into the system, it is economically desirable to dispatch them early in the utility’s stack of resources.

To date, the Bonneville Power Administration has integrated over 5,000 megawatts of wind power onto its system. To do so, BPA has dedicated significant hydro resources to mirror changes in production from the wind fleet. BPA maintains 900 megawatts of generating reserves that can be rapidly increased or decreased to offset wind resource fluctuations. This illustrates how a portion of BPA’s hydro generating resources that could be used for other resource adequacy purposes are diverted and used to integrate wind power.

Other steps are being taken to deal with the greater variability created by renewable resources. These include implementing shorter, intra-hour scheduling and dispatching practices, as well as developing new energy imbalance markets.

Demand response is another type of resource that has potential to contribute to resource adequacy. Demand response is not a generating resource; instead it works by adjusting customer use of electricity to help maintain the overall supply-demand balance on the power system. For example, if overall electric loads are increasing rapidly toward peak levels, a demand response can be used to reduce certain loads of customers who have volunteered to participate, typically in exchange for compensation.

Energy Northwest partnered with the City of Richland, Cowlitz County Public Utility District, Pend Oreille County PUD and BPA on the Aggregated Demand Response Pilot Project. This project is using 35 megawatts of aggregated fast-response demand-side resources to test their use to help meet capacity needs as well as flexibility needs on the BPA grid.

Tools – We need them all

Maintaining resource adequacy requires responsible energy policy decisions, at the local, state and federal levels, policy not driven by whims and fads. For instance, having a resource like Columbia Generating Station during the Western U.S. Energy Crisis of 2000 and 2001 saved the region approximately $1.4 billion according to the Public Power Council. That could not have been anticipated in 1999.

(Post by Charlie Black)

Columbia in NRC’s highest performance category

(From Nuclear Regulatory Commission news releases)

The Nuclear Regulatory Commission issued letters to the nation’s 99 commercial operating nuclear plants about their performance in 2015. All but three plants were in the two highest performance categories.

“These assessment letters are the result of a holistic review of operating performance at each domestic power reactor facility,” said Bill Dean, director of the Office of Nuclear Reactor Regulation. “In addition to ensuring that the nation’s nuclear power plants are safe by inspecting them, the NRC continuously assesses performance. The purpose of these assessment letters is to ensure that all of our stakeholders clearly understand the basis for our assessments of plant performance and the actions we are taking to address any identified performance deficiencies.”

columbia-nuclear-plant 600xx2400-1600-0-100

Columbia Generating Station.

NRC assesses plant performance through the use of inspection findings and other indicators that can trigger additional oversight if needed. Overall, (Columbia Generating Station) operated safely in 2015 and the plant is currently under the NRC’s normal level of oversight.

“By assessing each plant’s performance in a comprehensive manner, we are able to focus our inspection resources on those areas most in need of attention,” NRC Region IV Administrator Marc Dapas said. “Because Columbia Generating Station did not have any safety or security issues above very low significance in 2015, we are not currently planning any inspections above and beyond our normal reviews.”

The NRC’s normal level of oversight at each U.S. nuclear power plant involves thousands of hours of inspection. In 2015, the agency devoted about 6,000 hours of inspection and review at Columbia.

The Nuclear Regulatory Commission will hold a public open house on March 17, in Richland, Wash., to discuss the agency’s annual review of safety performance at the Columbia Generating Station nuclear power plant. The plant is operated by Energy Northwest.

NRC staff will be on hand from 5 to 7 p.m. at the Richland Public Library, Conference Room B, 955 Northgate Drive in Richland. While there are no formal presentations during the open house, the public will have an opportunity to ask about NRC’s assessment of the plant’s performance in 2015 and the agency’s oversight plans for 2016. Among the NRC staff in attendance will be the Resident Inspectors assigned to the plant on a full-time basis.

Of the 96 highest-performing reactors, 85 fully met all safety and security performance objectives. These reactors were inspected by the NRC using the normal “baseline” inspection program.