Analysis confirms nuclear’s value

Facts still matter. And the fact of the matter is residential utility rates in Washington state are the lowest in the nation. But some people want to change that and force Washington residents to pay more for their power.

“…the widely-publicized decline in solar and wind prices now makes it probable that (Columbia Generating Station) could be replaced entirely with renewable resources and still deliver a cost reduction to Pacific Northwest customers. Once thought to be too expensive, renewables are becoming a viable option for utilities…”

Portland economist Robert McCullough wrote those words as part of a February report pushed by Physicians for Social Responsibility, an anti-nuclear energy group dedicated to closing Columbia Generating Station nuclear energy facility and eliminating nuclear energy entirely from the U.S. electricity mix.

McCullough based his conclusions mostly on levelized cost of electricity reports by Lazard, a financial advisory and asset management firm. However, in doing so he misrepresents the Lazard LCOE 10.0 report, which clearly states that renewables alone can’t replace baseload generation. By ignoring the cost of firm capacity resources needed to back up intermittent generation from renewables, McCullough significantly under-represents the costs that would be incurred if Columbia were retired prematurely (it’s currently licensed through 2043).

McCullough’s conclusion: replacing Columbia with renewables yields a net present value savings of $261.2 million to $530.7 million through June 2026.

A recently released analysis (PPC Analysis – McCullough CGS Report) by the Public Power Council, an entity that has represented the Pacific Northwest’s consumer-owned utilities for 50 years, uses actual data for the Northwest to show McCullough is simply wrong in his conclusions.

The PPC report concludes McCullough’s recommendation would cost Pacific Northwest power customers $271 million a year, as well as impact the region’s power supply resource adequacy.

Playing with numbers

As the PPC report explains, McCullough uses the “median” Lazard LCOE to make his cost comparison, which gets him a cost per megawatt-hour for solar of $42.50 and $31 for wind. The PPC writes, “(a)lthough these values might be realistic in some circumstances, they are wildly inconsistent with the values produced specifically for this region by the [Northwest Power and Conservation Council].”

But the numbers in the Pacific Northwest aren’t as friendly to McCullough and PSR, so they avoid them altogether. The PPC looked at the NWPCC’s Seventh Northwest Power Plan to find levelized costs more in tune with the region where necessary replacement power for Columbia would be generated. “The least expensive new renewable resources in terms of levelized cost in the 7th Power Plan is $61.43 per MWh for utility scale solar and $102.45 per MWh for wind. Many options are significantly higher,” the PPC writes.

They go on to offer a slight rebuke of McCullough’s research tactics.

“Although the (McCullough) report cites the NWPCC and the 7th Power Plan in other instances, the choice to rely on a minimally documented, national level report for levelized resource costs rather than the extensively vetted regional analysis used by the NWPCC is not explained.”

Perhaps we can help. Anti-nuclear energy ideology drives many folks to discount scientific facts about nuclear (such as calling carbon-free nuclear “dirty”) and economic facts that don’t serve their point of view (such as existing resources being cheaper than new resources, even renewables). A lot of people across the country just participated in the March for Science which was, in part, a protest against this type of tactic. In fact, PSR members just marched against this type of tactic.

Doing the math

The PPC takes the NWPCC solar cost of $61.43/MWh and adds Bonneville Power Administration’s Resource Support Services number, basically capturing the cost of an intermittent resource versus a baseload, or full-time, resource. The PPC report uses BPA’s 2018 rate case number of $16.30/MWh for solar.

“Using regionally vetted analysis from the NWPCC and BPA’s latest proposed rates, the least expensive replacement for the power of (Columbia) with intermittent renewables would be utility scale solar facilities in Idaho at a total cost of $78.84 per MWh,” according to the PPC report.

The average cost of power for Columbia Generating Station is $48.50/MWh through 2026 (including transmission), according to the PPC.

McCullough Chart new

Given the difference between the two costs, based on Columbia’s 1,019 aMW annual output (1,019 MW of generation an hour multiplied by 365 days), the McCullough/PSR recommendation would cost power customers $271 million a year over what they currently pay.

“This result is consistent with a scenario analysis conducted in the 7th Power Plan that examined the change in regional portfolio cost for the planned retirement of a 1,000 MW carbon free resource. That analysis found an increase in regional power costs of
$3 to $6 billion on a net present value basis over 20 years,” the PPC concludes.

Other report issues

Cost is certainly an important factor when considering electricity resources. But so is capacity and reliability, or what McCullough strangely sees as “inflexibility.”

In his report, McCullough writes, “Indeed, as renewable energy standards in the Pacific Northwest, California, and other Western states require additional variable resources, inflexible baseload plants, including nuclear and coal plants, will become increasingly problematic.” This ignores two key points: that intermittent generation from renewables is not a reliable replacement for baseload generation; and, existing Northwest coal plants are and will be retiring, reducing the available amount of baseload generation in the region. By arguing that Columbia should be retired, McCullough is doubling down on these challenges.

The Public Power Council report catches this mistake.

“The NWPCC conducts a rigorous, annual Pacific Northwest Power Supply Adequacy Assessment which looks forward five years. The most recent assessment conducted in 2016 for adequacy in 2021 already shows significant potential for resource deficiencies based on the planned retirements of the Boardman, Centralia and Colstrip Units 1 & 2 coal facilities. Retirement of (Columbia) would significantly exacerbate these issues,” the PPC writes.

A final point from PPC: BPA uses the hydro system to help balance the wind generation in the region. The baseload electricity from Columbia Generating Station provides significant additional margin to accomplish that while still maintaining an environmentally-friendly carbon-free mix. Following the McCullough/PSR formula would put added pressure on BPA and the hydro system.

Here’s why:

“(T)he 7th Power Plan specifically does not rely on the large scale development of intermittent resources to meet capacity needs, instead calling for demand response measures as available or natural gas generation,” according to the PPC analysis.

Reports, reports

So to summarize, McCullough took 48 pages to reach a result that was off by literally more than half a billion dollars at best ($750 million at worst) versus a three-page analysis that provided facts relevant to the Northwest and its power customers, and showed the true value of Columbia Generating Station to the region.

As another regional energy expert said about this McCullough report:

Overall, it looks like Robert McCullough hasn’t changed his basic approach. Instead, he’s just adding more superstructure on top of a weak foundation. For example, he willfully continues to ignore and misrepresent the fact that the Mid-Columbia spot market only reflects the variable operating costs of resources, and at best only allows a small portion of the fixed costs of owning resources to be recovered.

As headline grabbers, McCullough’s reports do the job admirably (see here and here, for example), but as the basis for serious energy policy discussions, they seem to miss the mark, and in this case, wildly.

(Posted by John Dobken)

 

Of Marches and More

“(Climate change) is along with the prevention of nuclear war the greatest challenge facing humanity today.”

That statement does not contain a lot of wriggle room.

The line is from a letter to the editor written by Jim Sawyer, identified as a member of Washington Physicians for Social Responsibility by the organization. That is a group trying to shut down Columbia Generating Station nuclear power plant and is in favor of eliminating nuclear energy altogether.

Nuclear energy provides 60 percent of the carbon-free electricity produced in the United States. That dwarfs wind (17%), solar (2.7%) and hydroelectric power (19%) by comparison.


PowerPoint Presentation


The real reality
So how does one go about tackling “the greatest challenge facing humanity today”? Eliminating sources of clean energy would seem a dubious beginning. We have seen in states where nuclear plants shut down that carbon emissions rise. Look at Vermont (Vermont Yankee). Look at California (San Onofre, and perhaps Diablo Canyon). New York is gearing up to replace carbon-free Indian Point Nuclear Power Plant with a carbon-emitting natural gas plant. Even in Germany, often held up as an example of how to do renewable energy policy, emissions, coal use and electricity costs are all up.

This week, the Environmental Defense Fund acknowledged this reality in a post in favor of offering targeted financial incentives to existing nuclear energy plants to remain operating, if the alternative is to replace them with natural gas. That’s smart.

Nuclear Energy Saves Lives LGRenowned climate scientist Dr. James Hansen, in a study published by NASA’s Goddard Institute in 2013, found the clean air energy from nuclear power has saved 1.8 million lives and may save as many as 7 million more.

The United Nations’ Intergovernmental Panel on Climate Change has been saying for years that nuclear energy must be part of the climate change solution. In 2014 they wrote, “Achieving deep cuts will require more intensive use of low-GHG [greenhouse gas] technologies such as renewable energy, nuclear energy, and CCS [carbon capture and storage].”

Given these pro-nuclear voices and benefits, one would think the Physicians would be calling for MORE nuclear energy, not less.

To make a difference
Which brings us to Saturday, when people from all across the country will be marching for science. Some critics have said the march is more about politics than science, which in some cases and for some people may be accurate. Leave that aside.

Sci-con.Artboards.AtomIt is refreshing that the Seattle march organizers (and indeed the national organization) created a graphic that features the symbol of the atom and sought to make nuclear energy part of the conversation. Nuclear science is an often forgotten field, foolishly equated by some to simply making bombs. But it is so much more (as in saving lives through nuclear medicine – surely PSR supports that!). As Dr. James Conca has said, when a mainstream media outlet features a segment on nuclear energy, the “expert” is almost always an activist, not a scientist. That needs to change.

To embrace science (and facts) is to realize that spent nuclear fuel is not the problem so many anti-nuclear activists make it out to be. It is used as a rhetorical fallback position (“yeah, but what about the waste”) to argue against any new nuclear energy. This should stop. Used nuclear fuel occupies a tiny land footprint and poses no environmental concerns as it is currently stored. The science tells us that. If one believes otherwise, that’s a departure from science into ideology. Science is helping us develop a way to utilize this spent fuel and turn it into more clean energy. Thankfully, interest in developing advanced reactors is gaining momentum.

To embrace science is to realize radiation is not the stuff of 1950s b-movies. That while natural disaster-induced nuclear events such as Fukushima are absolutely devastating to displaced local populations, claiming that people or fish/wildlife will be greatly affected by any resulting radiation/contamination is irresponsible. Scientists, real scientists, have looked at the impact of the releases from Fukushima on health and future cancer rates and found them to be negligible. That’s science. Anything else drifts into the realm of “alternative facts.” And who wants to go there?

Ideology is what drives false narratives about “easily” replacing baseload, or full-time, energy resources with intermittent ones. See an example here of how difficult it can be, even on a small scale. (Paywall alert). Don’t be mistaken, we need wind and solar as part of our electricity mix, especially to displace carbon-emitting resources. But using wind and solar to replace either hydro or nuclear makes zero sense in the age of climate change.

While storage technologies are promising, they aren’t efficient enough or economic enough to replace large hydro or large nuclear or large fossil resources. In 20, 30 or 40 years, perhaps. But groups like Washington Physicians for Social Responsibility want to close down nuclear plants yesterday. That’s irresponsible. Tesla cars are fun to talk about, but the world still runs on pick-up trucks and Camrys.

Mr. Sawyer continues his letter, “What’s almost as horrifying as these impending and looming realities is our government’s incomprehensible indifference to the problem and the seeming commitment and desire to accelerate a problem that the human imagination cannot even begin to come to grips with.”

Doctor, heal thyself.

The PSR position on nuclear energy was born of, and lives in, a pre-climate change universe. Since the time most anti-nuclear energy positions were formed in the 1970s and 80s, nuclear energy has only gotten better as an energy resource. The U.S. fleet now has annual capacity factors over 92 percent.US-Nuclear-Industry-Capacity-Factors It’s safety record continues to be unmatched. Which may be one reason anti-nuclear energy arguments focus almost exclusively on cost of power. But if you believe, as Mr. Sawyer and his colleagues believe, that climate change is “the greatest challenge facing humanity today,” shouldn’t that change the prism through which costs are viewed? How does the public health factor into PSR’s cost analyses? (Hint: it doesn’t for nuclear. Washington’s PSR chapter actually posted that link on their Facebook page, missing the irony). Cost for anti-nuclear groups is a convenient cudgel that only swings at one target, an opportunity brought about by (current) low natural gas prices. But then they don’t want natural gas either. That’s what ideology does for you.

Science… just the facts
While we still await an energy storage system capable of city-scale baseload equivalence; or a large-scale electric grid that can turn part-time energy resources into full-time, dispatchable resources; science has already developed a resource that is carbon-free, cost-effective and runs more than 90 percent of the time with an abundant supply of fuel.

Yeah, science did that.

Support science with your feet, but more importantly, support it with your brain and your heart.

(Posted by John Dobken)

Resolute about Nuclear Energy

Four Energy Northwest member utilities issued resolutions during the past two months calling for the continued operation of Columbia Generating Station during its lifecycle. Columbia received a license extension from the Nuclear Regulatory Commission in 2012 to operate through 2043.

Pacific County Public Utility District 2 commissioners were first to place their signatures behind the economic and environmental value of Columbia, followed
March 28 by Benton and Franklin PUDs and Grant County PUD 2.

Resolutions adopted by Benton PUD and Franklin PUD also took to task a recent report commissioned by the anti-nuclear energy group Physicians for Social Responsibility. In the report, researcher Robert McCullough claims Columbia’s output can be replaced by renewable resources. (See our blog post for more on the report).

“We felt pretty strongly about this,” said Franklin PUD general manager Tim Nies during the utility’s public meeting March 28, referencing “a lot of flaws” in the PSR report. “CGS is baseload…and the cost of generation from CGS is still a really good deal.”

Resolutions

Such statements of confidence join state bi-partisan political support for nuclear energy generation that, according to Gov. Inslee last year, is “a vital part” of the state’s diverse mix of environmentally responsible generating resources.

Last summer Washington State Democrats passed a resolution titled, “Retain the Columbia Generating Station”. In early March the Benton County Republican Party passed a similar resolution which, like its democratic companion, is expected to advance this year to full state party support.

Brent Ridge edit

EN Vice President for Corporate Services/CFO Brent Ridge

“This all started with the state democratic party, which focused on the environmental benefits of nuclear power generation,” Brent Ridge, vice president for Corporate Services and chief financial officer, told Franklin PUD commissioners. “Now we have a resolution from Benton County republicans that’s similar, but leans toward the specific economic benefits of Columbia.”

Directly responsible for more than 1,000 high-paying jobs, Columbia is the third largest electricity generator in the state, behind Grand Coulee and Chief Joseph dams. Plant operations prevent an atmospheric carbon impact equivalent of keeping 600,000 cars off the road, or equal to eliminating every passenger vehicle in Oregon’s Multnomah County.

Last month Pacific PUD leaders also pushed back on a local activist’s call to close Columbia because of “risks to the Columbia River.” In a letter published in the Chinook Observer, Commissioners Diana Thompson, Michael Swanson and Dick Anderson spoke to Columbia Generating Station’s safe and efficient operation, declining costs, recent generation records and environmental benefit.

“PUD commissioners and employees have gained insights and knowledge about nuclear energy and nuclear energy operations; about their systems and back-up systems; the regulatory framework these plants operate in; and the professionals who keep the plant running safely and efficiently,” the commissioners wrote.

(Posted by Mike Paoli)

 

Making the Case for Nuclear Energy: 5 Questions

Everyone comes to nuclear energy along different paths. For some the journey starts in high school. For others, later in life, after knowledge has been gained and, perhaps, views have changed.

Such is the case for the participants in Tuesday’s event (April 4) at Seattle Town Hall, Making the Case for Nuclear Energy in the 21st Century (tickets and information available here). The event is an effort by the grassroots organization Seattle Friends of Fission, a group of Seattle-area residents, to ensure nuclear energy is part of the climate change discussion.

Panelists Dr. Jim Conca, Forbes.com contributor on energy and environmental issues; Dr. Nick Touran, advanced nuclear reactor physicist for TerraPower; Kristin Zaitz, senior consulting engineer, Diablo Canyon Nuclear Power Plant and co-founder of the group Mothers for Nuclear; and moderator Scott Montgomery, nationally acclaimed writer, and adjunct faculty, University of Washington Jackson School of Intl. Studies, offered their thoughts on how nuclear energy became a calling instead of just a career.

Speakers


Northwest Clean Energy: What first got you interested in nuclear energy?

Nick Touran: I first got interested in solving the energy challenge in high school. I went to the local engineering school not knowing how exactly to do this and ended up in a discussion with a peer advisor on what to major in during freshmen year. She asked what I my interests were and I said “energy.” Then she asked me if I had considered the nuclear engineering department. I had not.

Kristin Zaitz: I’m a civil engineer by training. I chose my profession when I was in my teens, flipping through college catalogs. The pictures of civil engineers were all outdoors, inspecting bridges, taking water samples. I didn’t want to be in an office. In my career I’ve rappelled down enormous concrete structures, swam amongst beautiful Pacific Ocean sea life, hiked along rivers, explored pristine coastland and tide pools,  and I’ve done that all while working at a nuclear power plant.

Scott Montgomery: I am a geoscientist and became an anti-nuclear activist in the 1970s. At that time, fear focused on radiation and on nuclear power as a dangerous technology forced upon the public by an anti-democratic concentration of power by a military-industrial-government system.

I began to question my views in the early 2000s, due to rising concern among scientists about climate change. One key influence was the endorsement of nuclear power by many of these scientists, who wrote of reevaluating their own former ideas.

Jim Conca: As a young planetary geologist in the 1970s, I first became interested in nuclear as

Jim Conca Salt I0001

Dr. Jim Conca with Delaware Basin salt from New Mexico’s Waste Isolation Pilot Project.

possible propulsion for spacecraft. Later, I worked on deep geologic disposal of nuclear waste and began to see the irrational fear that surrounds radiation and nuclear power, and how the misunderstanding between weapons and energy led to nuclear being used as a political tool during the Cold War.

Being an environmentalist and understanding both climate change and the massive direct pollution caused by fossil fuels, it became obvious that we need all non-fossil fuel sources for a sustainable future that provides everyone on Earth with reliable and sufficient power to have what we consider a good life.

SM: Educating myself on basic nuclear science and radiation led me to look into the Manhattan Project, the detailed development of weapons and the impacts of Hiroshima and Nagasaki, and from there, into the history of nuclear power, the medical literature on health effects of radiation, and a great deal more. Over the past decade, as part of my research for a book on the future of nuclear in this century, I have had conversations with hundreds of physicians, radiation workers, nuclear engineers, radiobiologists working at hospitals, health physicists at the Centers for Disease Control, anti-nuclear activists, and ordinary citizens.

 

Scott M Tour

Scott Montgomery, at far right, with students from his class on a tour of Columbia Generating Station.

The combination of all this study and work has made it clear beyond measure that nuclear power is among the least threatening of all major energy sources and among the most essential for battling climate change.

KZ: I’m interested in conserving our precious land, cleaning up our air, and protecting our climate. When I connected nuclear energy with the things that I value, my interest in nuclear was born.

Far more has been done out of uninformed fear than informed understanding.
– Scott Montgomery

Northwest Clean Energy: Why do you think there is not more widespread acceptance of nuclear energy?

Kristin Zaitz: Because of people like me. Like many people, I am afraid of things that I don’t know a lot about, I am biased in ways that I don’t immediately realize, and I am not naturally good at assessing risk. We all tend to seek out data that confirms our beliefs.

IMG_2040

Kristin Zaitz with children Oliver and Kate.

I have spent over fifteen years working at a nuclear power plant, learning, questioning, exploring, discovering. When I started my career, I thought that I was going to uncover a pile of dirty secrets that the mad scientists were hiding. My preconceptions were the product of the mainstream environmental anti-nuclear fear campaign that preys on the public’s lack of information about nuclear power coupled with fear of radiation and nuclear weapons. It took many years for me to shake that fear, but I ended up discovering nuclear energy to be one of the best kept secrets in land conservation and climate action.

Nick Touran: I once went out on the streets of Ann Arbor, Mich. asking people what they thought about nuclear energy for a documentary. People generally mentioned the typical four

lab_dinner

Dr. Nick Touran of TerraPower.

concerns: waste, bombs, accidents and cost. But one woman summed up the general feeling really well when she said “Honestly, my gut feeling is that I’m not in favor of it, but I don’t know hardly anything about it.” Her friend standing there chimed in “I second that!” So I’ve made an effort to try to help people understand nuclear energy better. Generally, the more someone understands it, the more accepting of it they are.

Scott Montgomery: This is both an easy question to answer and a challenging one to explain. There is little doubt in my mind:  the most fundamental factor is the fear of radiation. It is not a simple fear, combining as it does many anxieties about society and the self. But it saturates nearly everything to do with nuclear power, from the unending talk of “safety” to the idea of a “dirty bomb.”

Jim Conca: Agree. The intentional, but incorrect, fear of all radiation, even at low levels that cause no harm.

SM: Far more has been done out of uninformed fear than informed understanding. Educate and reduce that fear, and a great burden will be lifted.

Northwest Clean Energy: If there was one thing you could tell someone to help them understand why nuclear energy is good, what would it be?

Scott Montgomery: 50 years of civilian nuclear power, with an average of 300 reactors operating, has resulted in only 3 large accidents, two of them without a single injury to the public.

Jim Conca: Fewer people have died as a result of nuclear power than any other form of energy, including renewables. It is the most reliable, safest, longest-lasting form of energy we have.

Kristin Zaitz: I’d want them to understand how electricity is generated, how it is transmitted, and the magnitude of our consumption in the developed world. When you look at the abilities and limitations inherent in the technology of each available energy source, and pair that with the environmental pros and cons of each, you realize that there is a trade-off in every energy scenario. We need to understand those trade-offs and make wise choices. With nuclear as part of a clean energy mix, we can provide abundant energy to our growing world and minimize the impacts to people and nature.

Nick Touran: I like informing people that if they got 100 percent of their energy (electricity, transportation, heating, everything!) from nuclear fuel, they’d consume about 1.5 soda cans of it in their lifetime and produce no climate-altering byproducts. I’d then go through the key concerns and point out how there are reasonable solutions to all of them, but I guess that’s more than one thing.

Northwest Clean Energy: What is the greatest myth about nuclear energy?

Kristin Zaitz: The greatest myth about nuclear energy is that we don’t need it, and that we can decarbonize without it. Germany is a great practical example of this. Germany is succeeding at adding lots of wind and solar power to the electric grid, but still its carbon emissions are rising since this intermittent supply is backed up by fossil fuels. We simply cannot decarbonize our energy supply with renewables as long as they are backed up by fossil. Energy storage is something that we don’t do well at large scale, or for any appreciable length of time. In absence of an energy storage miracle, Germany and many others are doing the only technologically possible thing that they can do and locking in their dependence on fossil.

Nick Touran: That they’re unsafe. At a public meeting last year the people laughed out loud when a nuclear supporter said it was one of the safest energy sources known. Upon even brief research, anyone can see that the data support this conclusion. Nuclear has actually net saved 2 million lives worldwide by displacing air pollution deaths even considering the effects of nuclear accidents. I think it’s a shame that people reject the data on this one.

Northwest Clean Energy: Looking to the future, what is your hope for nuclear energy, in the U.S. and the world?

Jim Conca: My hope is that the United States will retake the global leadership in nuclear science and nuclear power. We should complete development of new reactor technologies that are ideal for eradicating global poverty and reverse global environmental degradation before we pass the point of no return, somewhere around 2050.

Nick Touran: Some Chinese urban populations are losing something like five years of life due to air pollution, so they have an urgent clean energy need. Accordingly, I see China, India, and Russia building large nuclear fleets in the somewhat near future.

Scott Montgomery: My hope is that the U.S. will see the need for expanding and advancing nuclear power in a major way, a technology it has given to the world. That the many new nuclear start-up companies in the U.S. and Canada focused on advanced reactors that address waste and non-proliferation concerns, find major success.

Kristin Zaitz: I want energy access for all of humanity, clean air, a livable climate, and room for nature. I see this happening through the protection of existing nuclear energy, and the expansion of new nuclear and other clean technologies across the world.

(Posted by John Dobken)

Reader Beware: apples and oranges alert

When rhetoric edges toward demagoguery, techniques to beware of include selective use of data and misleading statements that may sound appealing but actually perpetuate misconceptions. And when an author’s own numbers don’t support their broad conclusions, it’s time to be even more wary about going along for the ride.

Enter Robert McCullough’s latest faulty comparison of the cost and value of various forms of power generating resources (Renewables Cost Report, published by McCullough Research on Oct. 5).

The primary focus of McCullough’s report is on declining costs for new renewable resources such as wind power and solar photovoltaic generation, relative to other types of power supplies, including new hydroelectric power plants. The report begins by reiterating the conclusion reached in an earlier McCullough Research report:

“This assessment only reinforces the conclusion I reached in my report last year – renewables such as solar and wind are less than half the cost of hydro.”

Immediately following this statement, the McCullough report presents a table comparing the average levelized (life-cycle) cost in Canadian dollars per megawatt-hour (MWhr) for the following generating resources:

mr-lcoe

Careful readers will quickly note that the numbers simply do not support McCullough’s claim that hydro is double the cost of other forms of renewable generation. According to his own comparison, the levelized cost of power from the Site C hydro project is estimated to be 15.6 percent higher than the cost of onshore wind power, and 41.5 percent higher than the cost of utility-scale solar photovoltaic generation. So right out of the gate, McCullough’s rhetoric is unsupported, even by the cost comparison he prepared himself.

But wait, it gets worse. McCullough’s simplistic comparison of the cost of power from these types of power resources totally ignores the practical reality that they have very different characteristics and capabilities. As a result, the value of the power produced by different types of power generation varies dramatically.

This is not a small point.

U.S. News and World Report made sure its readers were aware of LCOE drawbacks, the exact drawbacks McCullough chooses to ignore.

Despite the strengths of LCOE as a metric – it is easy to understand and widely used – it has some shortcomings, too. Namely, it leaves out geographic variability, changes with seasons and usually ignores the cost of environmental impacts such as the cost of carbon emissions. This metric is a bit too simple when comparing variable wind and solar generators to power plants that you can turn on and off at will, such as those fueled by uranium, coal and natural gas.

And one could add water.

For example, consider solar photovoltaic generation. As the McCullough report (correctly) notes, solar PV in the Pacific Northwest only produces at a 19 percent to 26 percent capacity factor. But what the McCullough report does not mention is that solar PV generation occurs primarily during the spring and summer months between mid-morning and late afternoon. Meanwhile, consumption of electricity in most of the Pacific Northwest is typically highest during earlier and later parts of the day, and during the winter season. This means that other, less intermittent forms of generation are needed when consumers use the most electricity. It also means that a significant share of solar generation occurs when the market value of power is low – further reducing the value of solar PV compared to other types of generation. These realities are not acknowledged in the McCullough report. (He does reference the potential use of energy storage to partially mitigate the daily mismatches between solar PV generation and consumer use of electricity, but conveniently neglects to include the additional costs that would be incurred for storage.)

Anyone living in the Pacific Northwest has felt the bite of Old Man Winter of late, with temperatures falling into the single digits for extended periods. How are people staying warm? Mostly from baseload, or full-time, electricity resources like hydro, fossils and nuclear.

BPA Source Graph.png

Is that value worth something? We think so.

Diversity is key

One of the information sources quoted in the McCullough report is Lazard’s Levelized Cost of Energy Analysis 9.0, which was published in 2015. The Lazard LCOE analyses are actually a good source of information about costs for various types of power generation. But unlike McCullough, Lazard is realistic about how a diversified mix of resources is needed to keep the lights on. Toward this point, here is a key quote from Lazard’s press release for their latest LCOE Analysis 10.0, issued December 15, 2016:

“Even though alternative energy is increasingly cost-competitive and storage technology holds great promise, alternative energy systems alone will not be capable of meeting the baseload generation needs of a developed economy for the foreseeable future. Therefore, the optimal solution for many regions of the world is to use complementary traditional and alternative energy resources in a diversified generation fleet.”

We could go on with identifying flaws in the McCullough report, but will close by observing that it improperly compares the cost of generating resources with the market value of wholesale power, and does so only when it supports false conclusions. For instance, the McCullough report once again trots out a previously-debunked and overly-simplistic comparison of the operating cost of nuclear power with “the low market cost of electricity.” Meanwhile, the report refrains from comparing the cost of new renewable resources with “the low market cost of electricity.”

When it comes to biased, inconsistent and misleading “analyses” like those presented in the latest McCullough report, reader beware.

(Posted by John Dobken)

Sharing, learning and acting for continuous improvement

Columbia Generating Station recently hosted a Japanese delegation from the Hokuriku Electric Power Company, including the chief nuclear officer and the engineering manager for Shika Nuclear Power Station in Shika, Ishikawa.

The visit is part of a partnership between U.S. and Japan CNOs to exchange information and operating experience. During this meeting, hosts and visitors discussed probabilistic risk analysis (a method to determine station risk), risk management and risk communication.

japan-visit-1

Corey Olivier, Operations Support manager (center) shows FLEX equipment to visitors from the Hokuriku Electric Power Company in Shika, Ishikawa, Japan. The six-member delegation spent two days at Columbia as part of a partnership between U.S. and Japan nuclear plants. (Kevin Shaub photo)

“This was tremendously valuable,” said Brad Sawatzke, Energy Northwest chief nuclear officer. “We all understand that nuclear power is a global industry, and that our performance is linked. A challenge to any plant in the world is a challenge to our entire industry.”

“We appreciate your team coming here and spending time with us,” Sawatzke told the six-member delegation at the conclusion of the visit. “We are very impressed with the actions you have taken to improve the protection of your safety equipment.”

During the two-day visit the delegation toured Columbia and EN’s new FLEX facilities. flexFLEX is a nuclear industry response to the events at Fukushima Daiichi that adds to the industry’s defense-in-depth safety at nuclear plants across the U.S. (See more about EN’s response here.)

Akizumi Nishino, chief nuclear officer for Shika Power Station, noted the additional seismic support on plant equipment, calling it “impressive.” Toshihiro Aida, manager of engineering at Shika, said he was struck by the cleanliness of the plant. If you’ve been to Japan, you know that’s saying something.

The delegation also saw preliminary work for the hardened containment vent system that will be installed during Refueling and Maintenance Outage 23, which begins in May. The system is part of the Nuclear Regulatory Commission’s post-Fukushima actions, and will include a 164-foot vent pipe running up the south side of the reactor building. The system will provide a direct means of venting an area of the primary containment, known as the wetwell, to outside the secondary containment structure during beyond-design-basis accident conditions.

hardened-vent-en-news

Diagram showing where Columbia Generating Station’s hardened containment vent will be located.

The tsunami at the Fukushima Daiichi nuclear power plant eliminated any onsite power at the plant after an earthquake removed all offsite power. Subsequent fuel melting led to hydrogen explosions that destroyed the reactor buildings (secondary containment) at three of the Fukushima Daiichi units. The loss of the various fission product barriers led to the release of radioactive materials, which further hampered operator efforts to mitigate the accident. The disaster claimed no lives, nor is it expected to, but today more than 80,000 people are still displaced from their homes.

One of the lessons directly taken from that series of events is the need for licensees with Mark I and Mark II containments to either upgrade or install a hardened containment venting system that will remain functional during beyond-design-basis severe accident conditions. Mark II containment systems were not designed with a “hardened” containment venting system, though the current design can employ other methods for reducing containment pressure. Columbia has a Mark II containment and, therefore, must design and install such a venting system to build-in additional protections in the event of a beyond-design-basis severe accident.

What is a “hardened” vent? From the Nuclear Regulatory Commission:

“Hardened” means these vents must withstand the pressure and temperature of the steam generated early in an accident. The vents must also withstand possible fires and small explosions if they are used to release hydrogen later in an accident.

The vent will provide a reliable method to ensure continued operation of reactor core isolation pump cooling operation and removal of decay heat during a beyond-design-basis event where all onsite and offsite power is lost. Along with our added FLEX safety equipment stored on site, it will further enhance Columbia’s safety margins.

As a continuous learning industry, the U.S. nuclear reactor fleet has put a lot of effort into reviewing what happened at Fukushima to make U.S. plants even safer. For Columbia, the NRC declared the plant “safe” regarding seismic hazards. New evaluations are taking place and will be completed soon. The Army Corps of Engineers recently completed its flood hazard evaluation and found that Columbia remains a “dry site,” in other words, the facility will not experience flooding to a level that would impact its safe operation should one or more Columbia River dams fail upstream of the station.

This continuous learning is making the industry safer – and more efficient. Nuclear energy is a full-time, or baseload resource. Capacity factors for the industry as a whole are rising; Columbia has operated at a more than 92 percent capacity factor over the past four years. As the threat of climate change becomes more real, carbon-free nuclear energy will become more relied upon to provide the clean-air energy that benefits the global environment while powering our homes and businesses, and sustaining our national standard of living.

(Posted by Kevin Shaub/John Dobken)

Shameless in Seattle

If the committee entertains such a resolution, Energy Northwest will be invited to participate in the discussion, (committee staffer Ted) Virdone said. At that point, “it will be essential for both sides to get a fair hearing.”  –Clearing Up, 2014

The Seattle City Council is set to vote today on a resolution that challenges the city’s reputation to be both progressive and environmentally friendly.

The resolution restricts the use of new nuclear energy by the city’s utility, should new nuclear become available (see below for more on that). The city currently receives more than 4 percent of its power (carbon-free) from Columbia Generating Station (which is more than it gets directly from wind power). Two years ago, a version of the resolution that called for shutting down Columbia would not fly so the council’s Energy and Environment Committee encouraged anti-nuclear groups to go back to the drawing board and focus on the future.

What was staged last week was another lesson in a strangely anti-democratic (and anti-science) process that grips this committee every time nuclear energy is the topic. The committee invited representatives from anti-nuclear energy groups to the table – but did not want to hear from any opposing views. Yet, like daisies growing through cracks in a cement sidewalk, several pro-nuclear voices were heard during the legally required public comment period (thank goodness for the law).

What the supporters said was informative and truthful – and the snickering heard in the background during one such statement spoke volumes.

So, sitting around a table with no opposing voices, committee members laughed and joked while discussing the prospect of nearly 1,000 Washington residents losing their jobs (including hundreds of union members and veterans).

Those jobs aren’t in Seattle, after all. Even State Rep. Gerry Pollett joined in, though making clear he was wearing his “other” hat, as head of anti-nuke Heart of America Northwest, and seemed to have no issues participating in such a one-sided hearing.

Where the power comes from

The resolution doesn’t mention Columbia by name, but Columbia was the focus of the entire meeting regardless. No one from Energy Northwest received an invitation to present any facts, unfortunately, because facts were sorely needed especially surrounding the clean air benefits of nuclear power.

Would it have mattered?

One councilwoman summed it up thusly when talking about moving the climate change discussion in a more “progressive” manner:

“…which is a hard thing to do given who we’re dealing with in terms of folks out in Central Washington…”

Well.

Had the Seattle form of “progressive” not been so exclusionary, she might have heard about the growing number of world organizations, governments and environmentalists embracing nuclear energy. Even from some of us here in the hinterlands. Yes, we consider ourselves environmentalists and walk the walk to boot.

All reputable organizations involved in the global climate discussion have come to the same conclusion. The Intergovernmental Panel on Climate Change, International Energy Agency and Energy Information Administration, as well as many individual scientists and environmental advocates, have said that the U.S. and world cannot achieve meaningful reduction in carbon emissions without nuclear energy.

In President Barack Obama’s 2011 Blueprint for a Secure Energy Future he writes, “…beyond our efforts to reduce our dependence on oil, we must focus on expanding cleaner sources of electricity, including renewables like wind and solar, as well as clean coal, natural gas and nuclear power – keeping America on the cutting edge of clean energy technology so that we can build a 21st century clean energy economy and win the future.”

Last year, Gov. Jay Inslee issued a proclamation during Nuclear Science Week in Washington. The proclamation reads in part, “…nuclear energy in our state and nation is helping to reduce carbon emissions and plays a vital part in the state’s diverse mix of environmentally responsible energy generating resources…”

Last month Sen. Cory Booker, D-N.J., weighed in during a Department of Energy summit in Washington, D.C. on the need to keep our existing nuclear fleet going. “Nuclear energy provides critical baseload power [and] more than 60 percent of our nation’s carbon-free electric generation. Most Americans don’t realize that and I was one of them. When it comes to carbon-free, baseload power, nuclear is it,” Booker said.

Our own Sen. Maria Cantwell, D-Wash., understands the issue as well. “It is vital that the United States continue to lead the world in clean energy, and nuclear may prove to be a key a component in this effort,” Cantwell said during a hearing of the Senate’s Energy committee on advanced nuclear technology in Washington, D.C.

Eco-warrior Stewart Brand, author of 2009’s Whole Earth Discipline: An Ecopragmatist Manifesto and founder of the Whole Earth Catalog, in 2010 said, “I surprised myself. I used to be, you know, pretty much a knee-jerk environmentalist on this particular subject. And then because of climate change I re-investigated the matter and discovered that I’d been misled in many of the details on how nuclear works.”

How about Michael Shellenberger, co-founder of the Breakthrough Institute and Time Magazine’s 2008 “Hero of the Environment.” He is one of the contributors to The Ecomodernist Manifesto, which was written last year in collaboration with Brand and 17 other notable scholars, scientists and environmentalists. (One of those was Robert Stone, the Oscar- and Emmy-nominated director of the “fiercely independent” documentary, Pandora’s Promise, which tells the anti- to pro-nuclear conversion stories of leading environmentalists.) While acknowledging the cultural barriers to nuclear power, the authors assert that nuclear “represents the only present-day zero-carbon technology with the demonstrated ability to meet most, if not all, of the energy demands of a modern economy.”


Think about this. World-renown climate scientist James Hansen would not be able to get a seat at the table of the Seattle City Council Energy and Environment committee because of his pro-nuclear energy position. And he’s not even from Central Washington!


At a time when the world’s leading scientific institutions and many here at home are telling us climate change is a real and immediate threat – and that humans are a significant cause of that threat – Physicians for Social Responsibility, the Sierra Club et al. are asking the Seattle City Council to denounce the technology that currently provides more than 60 percent of our nation’s carbon-free electricity (20 percent of total U.S. generation). Is that the national leadership role Seattle – the city that championed the Kyoto Protocols – is seeking to establish?

Leading from behind?

Seattle wants to dramatically reduce city sources of greenhouse gases to achieve carbon neutrality by 2050. The city hired experts from the Stockholm Environmental Institute to see if it could be done. They said it could, so the city is aggressively going after that goal. One of those experts at SEI is Karl Hallding, a co-author of Beyond Paris: Using Climate Change Scenarios to Manage Risk. In 2014 Hallding, an expert on China’s oppressive energy pollution problem, said “an interesting sign in the sky is that … the share of thermal power, most of which comes from coal … that came on line in China in 2013 fell to around half for the first time thanks to the growth in alternative energy sources – hydro, wind, solar and nuclear.” Perhaps an SEI business card is still lying on someone’s desk at Seattle City Hall. Now would be a good time, prior to today’s full council vote, to give SEI a call for a brief education on nuclear energy’s important role in achieving a clean energy future.

It’s always refreshing to see city governments do right by their citizens. In this case, Seattle, make some phone calls to people who have higher-education degrees and have published on this topic – a proper balance of pro and con – and ask them to come speak to you. Include them in the public dialogue. Then decide.

Energy Northwest has a vision for nuclear power in our region, but this vision does not include new nuclear generation in Washington during the foreseeable future. Our state simply doesn’t need the power, let alone the massive amounts of power that would come from a new single nuclear reactor (the Columbia Generating Station reactor is the third largest producer of electricity in Washington, behind Grand Coulee and Chief Joseph dams).

The Utah Associated Municipal Power Systems, however, is looking for clean, baseload (think “always on”) power to replace coal plants in their service territory, and that power may come from a small modular nuclear facility in Idaho. Their only other option for baseload power is natural gas, but “clean” natural gas emits 60 percent as much carbon as coal, so not nearly as attractive as carbon-free nuclear. We’d like to see the manufacturing portion of this project (a first-of-its-kind facility with global orders to follow) – and the thousands of associated jobs – end up here in Washington.

Fairness is fine

We are very happy to be contributing to Seattle’s boast as “The Nation’s Greenest Utility” and truly do not want any special favors from the committee or anyone else. The power from Columbia Generating Station goes to 92 utilities in six states. Seattle is one of them.

We are proud to be part of a Northwest energy mix that is among the cleanest in the world. Nuclear energy, as a safe, reliable and cost-effective generation resource, fits nicely with this mix. But that’s a common sense view, not an ideological one.

(Posted by Mike Paoli and John Dobken)

Analysis finds EN has lowest nuclear fuel costs

An analysis published this week in Platts’ Nuclear Fuel found Energy Northwest’s Columbia Generating Station had the lowest nuclear fuel cost of 28 plants surveyed across the country. Columbia’s fuel cost for fiscal year 2013 was 5.99 mills per kilowatt-hour of generation. A mill is a 10th of a cent. The average for the 28 plants surveyed is 8.16 mills per kwh, according to Platts.

Fuel Receipt 2

New nuclear fuel assemblies are inspected as they arrive at Columbia Generating Station.

“The plants reported their fuel costs either on the Federal Energy Regulatory Commission’s Form 1 or to Platts. These costs take into account such fuel-related expenses as the cost of uranium, conversion, enrichment services and the fabricated cost of the fuel, as well as the amortized value of all fuel in the reactor core that year and payments to the Nuclear Waste Fund,” Platts wrote in the article.

Energy Northwest financial data shows even lower nuclear fuel costs for Columbia in fiscal 2014 and fiscal 2015, 5.45 mills and 3.39 mills per kwh, respectively.

Columbia Generating Station, an 1,190-megawatt boiling water reactor, produces enough electricity to power a city the size of Seattle and is the third largest generator of electricity in Washington state. All of Columbia’s electricity is sold at-cost to Bonneville Power Administration. Ninety-two Northwest utilities receive a percentage of its output.

Energy Northwest’s historic low fuel costs can be directly attributed to the management of the nuclear fuels program, which looks for innovative ways to reduce costs.

Brent Ridge edit

Brent Ridge, EN chief financial officer.

“The Platts analysis confirms that the strategic moves we have made as an organization regarding our fuel management program are paying off for Northwest ratepayers,” Energy Northwest chief financial officer Brent Ridge said. “The uranium tails transaction completed in 2012 will only serve to continue this industry-leading trend in low fuel costs for Columbia.”

Energy Northwest began looking at the pursuit of recycling depleted uranium contained in the Department of Energy’s stockpiles in 2003 and the initial efforts led to the Uranium Tails Pilot Program, a demonstration program designed to determine if the DOE stockpiles could be successfully reused. The pilot program ran from May 2005 through December of 2006 and was successful in every aspect. Energy Northwest received 1,940 metric tons of natural uranium from the pilot, which was placed into inventory allowing the agency to avoid purchasing uranium during the historic price run up in that period.

The 2012 tails program was a larger follow-on program that again will help Energy Northwest control costs for the region’s ratepayers. The benefits of that program – less financial risk due to future fuel cost uncertainty, and lower fuel costs on an expected-value basis – are being achieved.The transaction increased rate stability by removing eight years of cost risk from Columbia’s fuel budget, and the transaction continues to have positive value, resulting in lower rates.

EN Uranium Product

EN uranium tails product when it was stored at Paducah, Ky.

Prior to the recent uranium tails program, Energy Northwest had enough fuel in inventory or under contract to meet its fuel reloading requirements through 2019. With the additional fuel, Columbia’s fuel costs will be reduced and predictable through 2028.

Platts, a division of McGraw Hill Financial, is an independent provider of information and benchmark prices for the commodities and energy markets. More information can be found at their website: http://www.platts.com.

(Posted by John Dobken)

Deep Dive: What is Resource Adequacy?

Electricity is something many take for granted, except in those rare instances when the power goes out. It’s not an overstatement to say that electricity is an invisible, ubiquitous and essential part of modern life; it keeps our homes and businesses well-lit, comfortable and safe, and it powers the various devices we use for work and leisure.

Whenever we flip a switch, adjust the thermostat, go online, recharge our smartphone, or drive through an intersection with a traffic light, we are counting on the power system to always be ready and able to reliably meet our needs.

20131018-detail-custom-towers-grand-coulee

Courtesy BPA

Highly dependable utility service is no accident – instead, it is provided by complex and sophisticated power grids that are the largest machines in the world. These electric utility systems consist of multiple parts, including power plants, transmission lines, local distribution facilities, and associated control and communication systems.

As our consumption of electricity fluctuates from moment to moment, hour to hour, day to day, and month to month, an equal amount of power needs to be produced and delivered to match the load. If at any given point in time not enough juice is being produced, the stuff we’re using starts to shut down. Conversely, if there’s too much juice, things start to overheat. So a continuous re-balancing of loads and resources takes place, like an intricately-choreographed, ongoing dance that enables modern life.

What is resource adequacy?

Simply defined, resource adequacy means having sufficient power resources available when needed to reliably serve electricity demands across a range of reasonably foreseeable conditions.

Electricity consumption is measured using two metrics – peak demand and energy load. Peak demand is the maximum amount of power used at a specific point in time, such as in the evening during very cold or very hot weather after people have arrived home and are using multiple power-consuming devices. The second metric, energy load, is the amount of power consumed over a period of time, such as the monthly energy amount shown on your electric bill.

To keep the lights on, the utility system has to do three things. First, it needs to have enough generating capacity available to meet the peak demands when they occur. Second, it needs generating resources that can produce energy to serve loads across time, from day-to-day, month-to-month, and season-to-season. Third, the utility system needs to have enough operating flexibility to follow upward and downward fluctuations in electricity demands. If the system has sufficient resources to do all of these things reliably, then it is deemed to have resource adequacy (including additional resources to protect against sudden unplanned outages).

What types of resources contribute to resource adequacy?

Traditionally, utilities have used three basic types of generating resources to perform the load-resource balancing act described above. The three types of power plants are known as baseload, peaking and midrange generators. All three types are needed to achieve resource adequacy.

Baseload generators can produce power at a constant rate for extended periods of time, and usually have a relatively low variable cost of production. Examples of baseload generation include nuclear power plants, as well as coal-fired plants. Baseload generators are the workhorses that produce large amounts of energy, along with steady, dependable capacity.

cropped-columbia-for-web.jpg

Columbia Generating Station near Richland, Wash.

At the other end of the spectrum are peaking generators, which can quickly provide capacity to help meet peak loads and to follow short-term fluctuations in loads. Peaking generators also tend to have higher variable operating costs. A common type of peaking generation is single-cycle combustion turbines. These are basically large jet engines that can burn either natural gas or liquid fuels. Peaking generators are good sources of capacity and flexibility, but due to their relatively high operating costs, they are not used to produce large amounts of energy.

Midrange generators have more operating flexibility than baseload generators but less than peaking generators. Midrange generators also have variable operating costs that are higher than baseload generators but lower than peaking generators. The most prominent example of midrange generation is combined-cycle combustion turbines, which produce power in two stages. In the first stage, natural gas is burned in a combustion turbine and used to turn a generator. In the second stage, exhaust heat from the combustion turbine is used to make steam and turn a steam turbine-generator. Typically, midrange generators are used to help supply moderate amounts of capacity, energy and flexibility.

Okay, by now you are probably wondering: What about all the hydroelectric power we have in the Northwest? Traditionally, hydro generation has helped meet the region’s needs for all three types of power. It is a particularly effective, low-cost resource for meeting peak demands and following fluctuations in demand. As a result, the Northwest has historically not needed as much fossil-fueled peaking and midrange generation as other regions of the U.S. Our Northwest hydro power also produces significant amounts of annual energy, but not as much as could be produced from an equal amount of baseload generating capacity.

How do utilities decide which resources to use?

When deciding how to operate their resources to meet consumers’ demands for electricity, utilities seek to provide reliable service at the lowest possible cost.

The resources that a utility normally decides to use, or “dispatch,” first are its resources that have the lowest variable operating cost. These include baseload resources such as Columbia Generating Station. Next, the utility dispatches its resources that have the next highest variable operating cost; often these are midrange generators. Finally, if its loads are relatively high or may be subject to rapid fluctuations, the utility will dispatch its more expensive peaking resources.

Columbia Generating Station is one of the key resources that BPA uses to deliver clean, reliable power to public power utilities across the Northwest. Columbia produces 1,190 gross megawatts of baseload power, including both firm energy and capacity.

For wind power to produce the same amount of energy on an annual basis, more than 3,500 megawatts of wind turbines would be needed. Also, Columbia is not subject to the fluctuations that affect generation from wind and solar-PV. As a result, Columbia provides capacity that is much more firm, and does not require other forms of generating capacity to be held to provide incremental and decremental reserves to integrate wind and other intermittent forms of generation.

How do renewables and other alternative forms of resources fit In?

During the last 15 years, large amounts of new renewable resources have been developed in the Northwest. To date, the predominant share of renewable resource additions in the region have been wind power, totaling over 8,000 megawatts of installed capacity. In more recent years, falling costs and government incentives have also begun to make solar photovoltaic power more attractive.

Nine Canyon Wind Farm

Nine Canyon Wind Farm, located south of Kennewick, Wash.

Wind and solar-PV differ from other existing power resources. In particular, wind and solar-PV produce power intermittently. This limits their ability to contribute to resource adequacy. However, both also have very low variable operating costs. This means that to the extent they can be integrated into the system, it is economically desirable to dispatch them early in the utility’s stack of resources.

To date, the Bonneville Power Administration has integrated over 5,000 megawatts of wind power onto its system. To do so, BPA has dedicated significant hydro resources to mirror changes in production from the wind fleet. BPA maintains 900 megawatts of generating reserves that can be rapidly increased or decreased to offset wind resource fluctuations. This illustrates how a portion of BPA’s hydro generating resources that could be used for other resource adequacy purposes are diverted and used to integrate wind power.

Other steps are being taken to deal with the greater variability created by renewable resources. These include implementing shorter, intra-hour scheduling and dispatching practices, as well as developing new energy imbalance markets.

Demand response is another type of resource that has potential to contribute to resource adequacy. Demand response is not a generating resource; instead it works by adjusting customer use of electricity to help maintain the overall supply-demand balance on the power system. For example, if overall electric loads are increasing rapidly toward peak levels, a demand response can be used to reduce certain loads of customers who have volunteered to participate, typically in exchange for compensation.

Energy Northwest partnered with the City of Richland, Cowlitz County Public Utility District, Pend Oreille County PUD and BPA on the Aggregated Demand Response Pilot Project. This project is using 35 megawatts of aggregated fast-response demand-side resources to test their use to help meet capacity needs as well as flexibility needs on the BPA grid.

Tools – We need them all

Maintaining resource adequacy requires responsible energy policy decisions, at the local, state and federal levels, policy not driven by whims and fads. For instance, having a resource like Columbia Generating Station during the Western U.S. Energy Crisis of 2000 and 2001 saved the region approximately $1.4 billion according to the Public Power Council. That could not have been anticipated in 1999.

(Post by Charlie Black)

Columbia in NRC’s highest performance category

(From Nuclear Regulatory Commission news releases)

The Nuclear Regulatory Commission issued letters to the nation’s 99 commercial operating nuclear plants about their performance in 2015. All but three plants were in the two highest performance categories.

“These assessment letters are the result of a holistic review of operating performance at each domestic power reactor facility,” said Bill Dean, director of the Office of Nuclear Reactor Regulation. “In addition to ensuring that the nation’s nuclear power plants are safe by inspecting them, the NRC continuously assesses performance. The purpose of these assessment letters is to ensure that all of our stakeholders clearly understand the basis for our assessments of plant performance and the actions we are taking to address any identified performance deficiencies.”

columbia-nuclear-plant 600xx2400-1600-0-100

Columbia Generating Station.

NRC assesses plant performance through the use of inspection findings and other indicators that can trigger additional oversight if needed. Overall, (Columbia Generating Station) operated safely in 2015 and the plant is currently under the NRC’s normal level of oversight.

“By assessing each plant’s performance in a comprehensive manner, we are able to focus our inspection resources on those areas most in need of attention,” NRC Region IV Administrator Marc Dapas said. “Because Columbia Generating Station did not have any safety or security issues above very low significance in 2015, we are not currently planning any inspections above and beyond our normal reviews.”

The NRC’s normal level of oversight at each U.S. nuclear power plant involves thousands of hours of inspection. In 2015, the agency devoted about 6,000 hours of inspection and review at Columbia.

The Nuclear Regulatory Commission will hold a public open house on March 17, in Richland, Wash., to discuss the agency’s annual review of safety performance at the Columbia Generating Station nuclear power plant. The plant is operated by Energy Northwest.

NRC staff will be on hand from 5 to 7 p.m. at the Richland Public Library, Conference Room B, 955 Northgate Drive in Richland. While there are no formal presentations during the open house, the public will have an opportunity to ask about NRC’s assessment of the plant’s performance in 2015 and the agency’s oversight plans for 2016. Among the NRC staff in attendance will be the Resident Inspectors assigned to the plant on a full-time basis.

Of the 96 highest-performing reactors, 85 fully met all safety and security performance objectives. These reactors were inspected by the NRC using the normal “baseline” inspection program.