Energy Policy by Headline

The headline certainly draws attention:

“Switch to Clean Energy Can Be Fast and Cheap”

In energy resource development, “fast” and “cheap” are laudable goals, but are seldom realistic.

Before an energy project can be built, it goes through multiple “processes” (planning, permitting, licensing).

It is also subject to various “hearings” (public, legislative, regulatory, even judicial – see Jim Conca’s take on the recent Supreme Court action on the Clean Power Plan).

These things are not fast nor are they cheap.

In the push to show that an “all renewables” electric grid can be readily and affordably implemented, shortcuts (intellectual and other) should not be taken that overlook what is actually needed to develop real-life power generation projects, much less massively reconfigure the national power system.

To summarize the article reprinted in Scientific American:

Wind and sunshine could power most of the United States by 2030 without raising electricity prices, according to a new study from the National Oceanic and Atmospheric Administration and the University of Colorado, Boulder.

Even when optimizing to cut costs and limiting themselves to existing technology, scientists showed that renewables can meet energy demands and slash carbon dioxide emissions from the electricity sector by 80 percent below 1990 levels.

In less than 14 years! Hey, what’s not to like about that?

The above assumes that a wide variety of technical, economic, and institutional challenges can be successfully overcome by 2030. For example:

MacDonald and Clack said the key enabler for their high renewable energy penetration scenarios is high-voltage direct-current (HVDC) transmission. Photovoltaics and wind turbines often generate direct-current electricity, so transmitting in direct current removes a conversion step that costs money and saps power.

HVDC transmission lines also have fewer losses over long distances than alternating-current transmission. The authors envision an HVDC network across the United States akin to the interstate highway system, shunting power from where it’s produced to where it’s needed in a national electricity market.

In other words, for the U.S. to make a huge, rapid switch to renewables, the study recognizes that the national transmission grid would have to be significantly re-vamped as well. All in 14 years’ time.Pop Mchx Flying Car 1957

Recall the cover of the July 1957 issue of Popular Mechanics that predicted flying cars would be as cheap as automobiles by 1967.

Blowin’ in the wind

As an example, consider the Northwest’s existing wind generating resources. They are heavily concentrated in the Columbia Gorge, for good reason; that’s where the wind is.

But, there are still weeks when the 5,000+ megawatts of wind generation capacity on the Bonneville Power Administration system isn’t contributing much, if anything, to the grid. Without the availability of firm back-up from hydro and thermal (nuclear, coal and natural gas), there’s real trouble. The lights don’t come on.

The study purports to overcome this challenge by building huge new HVDC transmission facilities to link all regions of the U.S. into a single fantastically huge grid. Imagine the expense, and the technical hurdles, that would need to be overcome to make this work.

So back to the “fast and cheap” scenario and the questions that are not asked.

Question #1: Who will pay for it?

Utilities generally don’t build generation projects because they are fond of the technology; they build them because there is a need, i.e. predicted load growth or retirement and replacement of generating resources. But in either case, there is a planning period that typically spans years before the first permit application is even filed. There is also the matter of securing the many millions, or even billions, of dollars needed to build the renewable resources, transmission facilities, control systems, etc.

Question #2: How long would it actually take to design, reach consensus on and then build a massively different power system?

Different regions across the U.S. have diverse mixes of public and investor-owned utilities with different processes located in various states with different rules and regulations and different environmental, cultural and economic concerns. In California, it took seven years just to reach agreement on and start up its regulatory program for reducing CO2 emissions.

It’s not realistic to think that all of the issues and interests could be addressed and then the new power system completed in 14 years’ time.

Question #3: Why an all-renewable portfolio anyway?

If the goal is to reduce carbon emissions, there are more alternatives than just wind and solar. There is hydro, there is nuclear, there is natural gas (which is less carbon-intensive than coal but way above the other two choices). The report does, thankfully, call for continuing existing hydro and nuclear resources, according to Rod Adams at Atomic Insights, who has delved deeper into it.

What some may not realize is that while the wind is free and the sun is free, the technology to convert wind and sun to electricity is not. It is a very mortal process with voices on all sides wanting a say. See the recent legislative episodes in Vermont.

A recent piece in the Spokane Journal of Business makes the case that in the Northwest, solar, not wind, will be the preferred new renewable going forward. A Bonneville Power Administration project engineer told the Journal:

“What we think we’re going to see is the development of solar energy take off. The cost to build is cheaper, and its power can be on a grid in a matter of months rather than years, as is the case with wind.”

But as long as there is a handful of people saying we can power the U.S. with wind and solar, the mantle will be picked up in the comment sections of energy related articles across the country. “So-and-so said we can do it, therefore we can!”

Question #4: How much new wind and solar generation do we even need in the Pacific Northwest?

When it comes to power resource planning, the Northwest Power and Conservation Council does as thorough a job as anyone of reading the landscape to see what’s on the horizon and beyond.

In the draft for their 7th Power Plan (the final plan is approved but not posted yet), the Council made clear that a non-generating resource is supreme:

“In more than 90 percent of future conditions, cost-effective efficiency met all electricity load growth through 2035. It’s not only the single largest contributor to meeting the region’s future electricity needs, it’s also the single largest source of new winter peaking capacity.”

What comes next? Demand response (we do that). And after that? Modest amounts of new natural gas-fired generation.

With just those three resources, load growth in the Northwest is covered through 2035, as projected, according to the draft plan.

As John Harrison of the NWPCC is quoted in the Spokane Journal article:

“It’s free fuel,” Harrison says. “But the bad news for wind power is that it doesn’t produce at capacity in high or low temperatures. We’ve probably maxed out on wind development.”

The Oregon experiment

That sentiment is also prominent in a recent Oregonian article by Ted Sickinger on the effort to move the state’s two largest investor-owned utilities out of the coal game.

The discussion in Oregon is to shift PGE and PacifiCorp to 50 percent renewables by 2040 (10 years later than the NOAA plan). Both would need to do away with a total of 2,400 megawatts of coal capacity, which means nearly tripling the current amount of wind capacity in the state (from 3,000 megawatts to 8,000 megawatts) if that is the chosen replacement resource. Cost: up to $13 billion.

Sickinger writes, “Yet there is a practical limit to the buildout in Oregon. The wind here doesn’t match Montana and Wyoming, and the windiest sites with nearby transmission on the Columbia Plateau are already taken. To maintain reliability, utilities will also avoid clustering all their wind turbines in one area.”

It’s a daunting task and ratepayers will ultimately decide if the environmental benefits of snipping the coal wire (the coal plants aren’t actually located in Oregon) are worth the estimated costs. But it is a shame that carbon-free nuclear energy is not part of the discussion, given NuScale’s development of homegrown small modular reactor technology. $13 billion buys a lot of NuScale modules. Just saying.

Smart energy strategy

More than aspirational dreaming, we need smart energy strategies – ones that take into account the economic, technical and environmental aspects of energy resource development. And what is possible. Also, one that values existing clean energy resources, such as nuclear.

In the real world the lights have to stay on. The heat pump has to work in the winter. The air conditioner in the summer. The margin for error is very small concerning people’s lives and livelihoods. “Fast” and “cheap” may not always cut it. Reliable and cost-effective will do just fine.

(Posted by John Dobken)

Update on EN, BPA Demand Response Project

Energy Northwest and the Bonneville Power Administration integrated an additional demand response resource into the Energy Northwest Aggregation Demonstration project that first went live Feb. 9. This project is the first-of-its-kind for the region. The system will help BPA test balancing loads on its Northwest transmission grid through industrial resource partners.

Over the long run, demand-side resources have the potential to defer or displace the need for new generation in the region and make the most efficient use of existing generation − resulting in overall cost savings for Northwest ratepayers. Since the launch of the pilot program in February, BPA has called for 11 tests lasting up to 90 minutes; each was a success.

Mark Reddemann, Energy Northwest CEO

Mark Reddemann, Energy Northwest CEO

“This is a testament to Energy Northwest’s mission to provide our public power members and regional ratepayers with safe, reliable, cost-effective, responsible power generation and energy solutions,” said Energy Northwest CEO Mark Reddemann.

In the past, BPA provided balancing services such as this solely with capacity from the federal hydropower system. However, growing demands on the hydro system along with the dramatic increase of wind generation have limited its flexibility to provide enough balancing reserves to meet reliability standards. This has necessitated that BPA explorethird-party capacity sources.

“The hydro system provides many benefits to the Northwest, but it has been stretched to its limit,” said BPA Administrator Elliot Mainzer.

Elliot Mainzer, BPA Administrator

Elliot Mainzer, BPA Administrator

“Moving forward we will need smart, sound measures, including demand response to cost-effectively maintain hydro and transmission system flexibility and deliver value and reliable service to our customers and the region.”

Following the agreement to start a pilot program, Energy Northwest assembled the demand response resource from asset loads served by regional public utility partners and took the role of the resource aggregator. The contract currently provides up to 35 megawatts of reliable “fast reaction” demand response-capacity resource.

Conceptually, demand response builds on the idea that while individual electricity loads are relatively minor compared to the scale of a regional transmission grid, many loads lowered and raised at once may serve as a cost effective alternative to building or purchasing the output of additional electric generating stations.

Demand Response

Energy Northwest has developed its Demand Response Aggregation Control System, a comprehensive data gathering, monitoring, control and communications infrastructure system, for the project. Communications devices are installed by each participating utility to report to and receive direction from the DRACS via secure cloud-based data paths. DRACS is hosted within Pacific Northwest National Laboratory’s Electricity Infrastructure Operations Center, a U.S. Department of Energy funded incubator facility built and operated for such roles.

Energy Northwest and its public utility partners continue to look for diverse electric loads from customers willing and able to reduce their electric demand on short notice. The participating public utilities that provide the customer loads for the demand response resource are expected to include utility participants in Idaho, Oregon and Washington.

How it works

BPA meets balancing obligations in real-time. When Balancing Authority conditions require BPA system operators to activate reserve system balancing resources – including demand response – BPA operations generates a signal calling on demand response assets for an event.

Energy Northwest’s Demand Response Aggregated Control System (DRACS) picks up BPA’s signal, acknowledges its receipt, and forwards the signal to multiple demand response assets. Upon receipt of the forwarded signal, each asset begins automatically to reduce its loads. The load changes must be complete within 10 minutes and sustained through the event, which can be up to 90 minutes in duration.

During events, DRACS collects detailed metering information from each of the assets and reports total capacity response delivered to BPA. Once an event ends, DRACS sends terminating signals to the assets which can then resume normal operations.

(posted by John Dobken)

Energy Northwest, BPA Launch Demand Response Pilot Project

Energy Northwest and Bonneville Power Administration announced a regional demand response program expected to come online in January 2015. Under the contract, EN will develop a 19-megawatt demand response pilot project with the option of bringing online additional demand response resources up to a total of 25 megawatts.

Energy Northwest expects up to $2 million in gross revenue value from the pilot project; much of this funding will support the comprehensive data gathering, monitoring, control and communications infrastructure and processes necessary to implement the regional program.

“This agreement furthers the Energy Northwest vision to be the region’s leader in power generation and energy solutions through sustained excellence in performance and innovation,” said Energy Northwest CEO Mark Reddemann.

Generation imbalance and reliability on the transmission grid is a challenge for balancing authorities such as BPA to manage. This agreement will explore the potential for energy end-users to lower within-hour consumption as a balancing management resource. Energy Northwest will lead the effort to assemble and operate an aggregated “fast reaction” demand response-capacity resource and BPA will evaluate the project’s ability to supply electricity reserves and other regional transmission system needs.

In the past, BPA provided balancing services such as these being tested solely with capacity from its hydro system. However, growing demands on the hydro system have limited its flexibility to provide this capacity so BPA is exploring third-party capacity sources.

Conceptually, demand response builds on the idea that while individual electricity loads are relatively minor compared to the scale of a regional transmission grid, many loads lowered and raised at once may serve as a cost effective alternative to building – or purchasing – the output of additional electric generating stations.

Energy Northwest will develop the Demand Response Aggregation Control System, a comprehensive data gathering, monitoring, control and communications infrastructure. Communication devices will be installed by each participating utility to report to and receive direction from the DRACS via secure cloud-based data paths. DRACS will be hosted within Pacific Northwest National Laboratory’s Electricity Infrastructure Operations Center, a U.S. Department of Energy-funded incubator facility built and operated for such roles.

DRACS

The DRACS infrastructure will support the demand response initiative. (Click to Enlarge)

“This regional demand response program will be the first-of-its-kind program in the Northwest led by public power, for public power,” said Jim Gaston, General Manager of Energy Services and Development.

Energy Northwest and its public utility partners will assemble diverse electric loads from customers willing and able to reduce their electric demand on short notice. The participating public utilities that provide the customer loads for the demand response resource are expected to include utility participants in Idaho, Oregon and Washington.

“The Demand Response project team remains open for participation from additional regional public utilities,” said John Steigers, Generation Project Developer and project manager for Energy Northwest’s demand response program. “We anticipate the demand response program will be a regional resource that will grow in value as additional utilities, load assets, and products are added to the resource.”

–By Laura Scheele, Energy Northwest